
Extending databases to precision-controlled retrieval
of qualitative information

Victor Polo de Gyves,1 Adolfo Guzman-Arenas1,2 and Serguei Levachkine2

(1) SoftwarePro International; (2) Centro de Investigación en Computación, Instituto
Politécnico Nacional. 07738 Mexico City, MEXICO

degyves@gmail.com, a.guzman@acm.org, sergei@cic.ipn.mx

Abstract. A hierarchy is an arrangement of qualitative values in a tree with
certain properties. Hierarchies allow to define the confusion conf(r, s) in using
qualitative value r instead of the intended or correct value s. From here,
“predicate P holds for object o”, written P(o), is generalized to “P holds for o
within confusion ε”, written Pε(o). These precision-controlled predicates are
useful to retrieve approximate answers, where the error (confusion) is known.

The predicates are implemented through an extended SQL that uses
confusion to retrieve information from a database. We show how to extend any
database for precision-controlled retrieval. Limiting the total error is also
useful, and this is achieved by predicate Pε. Examples are given.

1. Introduction and related work

A datum makes sense only within a context. Intuitively, we know that “computer”
is closer to “office” than to “ocean” or to “dog.” A “cat” is closer to “dog” than to
“bus station.” “Burning” is closer to “hot” than to “icy.” How can we measure these
similarities?

A hierarchy describes the structure of qualitative values in a set S. A (simple,
normal) hierarchy is a tree with root S and if a node has children, these form a
partition of the father [1]. A simple hierarchy describes a hierarchy where S is a set
(thus its elements are not repeated not ordered). For example: live
being{animal{mammal, fish, reptile, other animal}, plant{tree, other plant}}. In a
percentage hierarchy [3], the size of each set is known,1 for instance:
AmericanContinent(640M){North America(430M) {USA(300M), Canada(30M),
Mexico(100M)} Central America (10M), South America(200M)}. The nodes of a
percentage hierarchy are bags (sets where repetition is allowed). In an ordered
hierarchy [2], the nodes of some partitions obey an ordering relation (they are
ordered sets): object{tiny, small, medium, large}*.2 Finally, a mixed hierarchy
combines the three former types. Other works on retrieval of approximate answers are
referenced in [4].

1 Notation: after each set we write its size in parenthesis. Here we write number of inhabitants.
2 Notation: an * is placed at the end of the partition, to signify that it is an ordered partition.

For these four types of hierarchies we define conf(r, s) as the confusion or error in
using value r instead of s, the intended or correct value. These definitions agree with
the human sense of estimation in closeness for several wrong but approximate
answers to a given question; each is applicable to particular endeavors.

The main trust of the paper is in implementation. We define an extended SQL
syntax (XSQL) that deals with approximate queries on elements in a database holding
qualitative values hierarchically structured. XSQL expresses precision-controlled
predicates (§3). The user writes his queries in XSQL. A program (§4.1) converts an
XSQL expression back to (pure) SQL. Another program (§4.2) converts hierarchies
into tables (storing confusion values) that are added to the (normal) database. Thus,
the extension (to precision-controlled retrieval) of any database is possible. Some
examples are given, mainly for simple and percentage hierarchies, due to page limit.

2. Confusion in hierarchies

Who wrote Leaves of Grass? Walt Whitman is the right answer; Edgar Allan Poe a
close miss, Michael Jordan a fair error, and Mexico City or cellphone a gross error.
What is closer to a violin, a harp, a flute or a camel? Can we measure these errors?
Yes, with hierarchies of symbolic values. Some definitions from [1-4] are:

Let H be a simple hierarchy. If r, s ∈ H, then the confusion in using r instead of s,
written conf(r, s), is:

• conf (r, r) = conf (r, s) = 0, where s is any ascendant of r; (1)
• conf (r, s) = 1 + conf (r, father_of(s)) ♦ (2)

To measure conf, count the descending links from r to s, the intended or correct value.
Function conf is not a distance, nor an ultradistance. To differentiate from other
linguistic terms like relatedness or closeness, we prefer to use ‘confusion.’ Example:
in table 8, conf(Florida, USA)=1, conf(USA, Florida)=0, conf(USA, Mexico City)=2.

Let H be an ordered hierarchy. The confusion in using r instead of s, conf’’ (r, s), is
defined as follows:

• conf’’ (r, r) = conf (r, any ascendant of r) = 0;
• If r and s are distinct brothers, conf’’(r, s) = 1 if the father is not an ordered set;

else, conf’’(r, s) = the relative distance from r to s = the number of steps needed
to go from r to s in the ordering, divided by the cardinality-1 of the father; (3)

• conf’’ (r, s) = 1 + conf’’(r, father_of(s)). ♦
This is like conf for simple hierarchies (formed by sets), except that in them the error
between two brothers is 1, and here it is a number in (0, 1]. Example: Let Temp =
{icy, cold, normal, warm, hot, burning}*. Then, conf’’(icy, cold)= 1/5, while conf’’
(icy, burning)=1.

Let H be a percentage hierarchy. Let S be the set at the root of H. The similarity in
using r instead of s, simb (r, s), is:

• simb (r, r) = simb(r, any ascendant_of (r)) = 1;

• if r is ascendant of s, simb(r, s)= number of elements of S∩r∩s / number of
elements of S∩r = relative popularity of s in r. ♦ 3

The confusion in using r instead of s, conf’(r, s), is 1 – simb (r, s). ♦ (4)
Example: If baseball player(9) = {pitcher(1), catcher(1), base player(3){first base

(1), second base(1), third base(1)}, field player(3){left fielder(1), center fielder(1),
right fielder(1)}, shortstop(1)}, then (a) conf’(field player, baseball player)= 1 –
simb(fielder, baseball player)= 0; (b) conf’(baseball player, field player)= 1 – 1/3 =
2/3; (c) conf’ (baseball player, left fielder)= 8/9; (d) conf’ (base player, left fielder) =
2/3. This ends the definitions taken from [1-4].

Let H be a mixed hierarchy. To compute sim(r, s) in a mixed hierarchy:

• apply rule (1) to the ascending path from r to s;
• in the descending path, use rule (3) instead of rule (2), if p is an ordered set;4 or

use rule (4) instead of (2), when sizes of p and q are known. ♦ That is, use (4)
instead of (2) for percentage hierarchies.

This definition is consistent with and reduces to previous definitions for simple,
ordered, and percentage hierarchies.

3. Querying a database with predicates that are imperfectly
fulfilled

Precision-controlled predicates. A powerful use of confusion is to define predicates
over objects having attributes with domains on hierarchies, and to define some “loose-
ness of fit” for these predicates. That is, a predicate P shall be satisfied within a given
confusion [1]. Let Hv stand for a hierarchical variable, and v its value for object o. We
define predicate Pε thus [1]:

P holds for object o with confusion ε (written Pε holds for o, or Pε(o)) if:
• When P is of the form: (Hv = s), iff conf(v, s) ≤ ε. (footnote 5)
• When P is of the form P1 ∨ P2, iff P1 holds for o or P2 holds for o.
• When P is of the form P1 ∧ P2, iff P1 holds for o and P2 holds for o.
• When P is of the form ¬P1, iff P1 does not hold for o.♦

Examples (Figs. 2, 4 and 5): the predicate (address = North_America)0 will match
any person living in North America or any of its regions (subsets). The predicate
(address = Mexico City)1 will match any person living in Mexico City, Jalisco,
Guadalajara or Mexico. The predicate (address = Mexico City ∨ industrial_branch =
Mexican food)1 is equal to (address = Mexico City)1 ∨ (industrial_branch = Mexican
food)1 = {Garcia Productores, Mole Doña Rosa} ∪ {Luigi’s Italian Food, Mole Doña
Rosa}. The predicate (address = Mexico City ∧ industrial_branch = Mexican food)1

3 Relative popularity or percentage of s in r = number of elements of S that are in r and that also

occur in s / number of elements of S that are also in r.
4 Here, p and q are two consecutive elements in the path from r to s, where q immediately

follows p. That is, r …p q… s.
5 That is, the value v of property Hv for the object o can be used instead of s with confusion ε.

is equal to (address = Mexico City)1 ∧ (industrial_branch = Mexican food)1 = {Mole
Doña Rosa}.

From the definition of Pε holds for o, it is true that (P ∨ Q)ε = (Pε ∨ Qε). This means
that for (P ∨ Q)a = (Pb ∨ Qc), a = min(b, c). Similarly, for (P ∧ Q)a = (Pb ∧ Qc), we
have a = max(b, c).

In addition, we define a predicate with “delimited” confusion ε if the sum of the
partial confusions is ≤ ε, thus:

P holds for object o, but delimited by ε [read Pε delimited by ε, holds for o; written
Pε(o)], when P is of the form P1∧ P2∧...Pk and ∃ε1,ε2,… εk≥0 such that P1ε1(o) and
P2ε2(o)… and Pkεk(o) and ε1+ε2+…+εk≤ε. ♦ P “delimited by ε” means that the
accumulated confusions should not exceed ε. Note that the “delimited” confusion
does not apply to disjunctive predicates (of type P1∨P2∨…), because these hold even
when only one Pi holds, and therefore it does not make sense to add the confusion of
the Pi’s not holding. Example (Figs. 2, 4 and 5): (address = Mexico City ∧ industrial
branch = computer)1 = {Garcia Productores} because, for each of the customers of
Fig. 2, the accumulated confusion is, respectively, 2+0, 0+0.7, 2+0.7, 2+0, 2+0.7,
2+0.7, 1+0.7, 2+0.7, 2+0.7, 2+0.7.

3.1 Extended SQL (XSQL)

To query with controlled precision a table T of a database, SQL is extended by these
constructs:
• conf(R,s)≤ε, an XSQL representation for (R=s)ε, is a condition procedure used

in a WHERE or HAVING clause, which is true iff conf(r, s)≤ε. R is the name of a
column of T that is a hierarchical variable (a variable or column having
hierarchical values), r is each of these values, and s is the intended or expected
qualitative value. ♦ Example: conf(address,mexico)≤0 represents in
XSQL the predicate (address = mexico)0 and will select all rows from figure 2
whose address is Mexico with confusion 0; that is, all rows where (address = r)
and conf(r, mexico)≤ 0. It will return rows 2 and 7.

• conf(R) is an XSQL expression [a shorthand for conf(R,s)], used in
‘SELECT conf(R)’, or ‘GROUP BY conf(R)’ or ‘ORDER BY conf(R)’,
which returns for each row of table T, the value conf(R,s). ♦ That is, conf(R)
returns for table T a list of numbers corresponding to the confusion of the value of
property R for each row of T. Example: see figure 3.

3.2 The user writes a query EXPR in XSQL when he has Pε or Pε in mind

 The algorithm EXPR= replace(P) to substitute (the user thinks about precision-
controlled predicate P and writes EXPR instead) predicate P by its equivalent XSQL
expression EXPR is:

• (R = s)ε should be replaced by ‘conf(’ R ‘,’ s ‘)≤’ ε, when R is the name of a
column of a table, and s a symbolic value.

• (P1 ∨ P2)ε should be replaced by ‘(’ replace(P1ε) ‘ OR ’ replace (P2ε) ‘)’.
• (P1 ∧ P2)ε should be replaced by ‘(’replace(P1ε) ‘ AND ’ replace (P2ε)‘)’.
• ¬P should be replaced by ‘NOT (’ replace (P) ‘)’.
• (P1 ∨ P2)ε should be replaced by ‘(’replace(P1) ‘ AND ’ replace(P2) ‘ AND
(conf(’ P1 ‘)+conf(’ P2 ‘))≤’ ε‘)’. ♦

Example: (industrial branch = food)0 ∧ [(address = pasadena) ∨ (address = mexico
city)]1 is replaced by conf (industrial_branch, food)≤ 0 AND
(conf(address, pasadena)≤ 1 OR conf (address, mexico
city)≤ 1). Example: (address = Mexico City ∧ industrial branch = computer)1 is
replaced by (conf(address, Mexico City)≤1 AND conf
(industrial_branch, computer) ≤1 AND (conf(address)+conf
(industrial_branch))≤1).

3.3 Queries: retrieving objects that match Pε

Example: (address = usa)1 becomes the XSQL query conf(address, usa)≤1,
which returns any object whose value of property address can be used instead of
usa with confusion 1. Example: Figure 1 shows customers (of figure 2) for which
(address = california)1. This returns every record, except for Mole Doña Rosa [its
address is somewhere in Mexico and conf(mexico, california)=2, by figure 4]; except
for Garcia Productores [its address is in Mexico City and conf (mexico city, califor-
nia)=2]; except for Luigi’s Italian food [its address is somewhere in North America
and conf(north america, california)=2]; except for Canada seeds [because
conf(canada, california)=2]. Figure 3 sorts the result set based on the confusion.

Fig. 1. Querying conf(address, california)1: any customer in California with confusion 1

select customer.name, customer.address
from customer
where conf(customer.address,'california')<=1

NAME ADDRESS
East coast meat florida
Media Tools new york
Tom's Hamburgers pasadena
Microsol silicon valley
Tampa tobacco tampa
Texas fruits texas

Fig. 2. Table of customers

 name | industrial_branch | address | discount
----------------------+-------------------+----------------+---------
 Media Tools | computers | new york | 0
 Garcia Productores | tequila | mexico city | 0
 Tom's Hamburgers | food | pasadena | 0
 Microsol | software | silicon valley | 0
 East coast meat | meat | florida | 0
 Luigi's italian food | italian food | north america | 0
 Mole Doña Rosa | mexican food | mexico | 0
 Texas fruits | fruits | texas | 0
 Tampa tobacco | cigars | tampa | 0
 Canada seeds | food | canada | 0

Fig. 3. Querying, sorting and showing values for conf(address, california)1

select customer.name, customer.address,
conf(customer.address) from customer where
conf(customer.address,'california')<=1
order by conf(customer.address)

NAME ADDRESS CALIFORNIA
Tom's Hamburgers pasadena 0
Microsol silicon valley 0
Media Tools new york 1
Tampa tobacco tampa 1
Texas fruits texas 1
East coast meat florida 1

Fig. 4. The addresses of customers form a simple hierarchy. Hierarchies are used in §4.2 to
generate confusion tables such as that of figure 7

Property: address;
hierarchy: world{

 north_america{
 usa{
 california{
 silicon valley,
 pasadena, },
 new york{
 new york city
 },
 florida{
 miami,
 tampa
 },
 texas
 }
 canada,
 mexico{
 mexico city,
 jalisco{
 guadalajara } } } }

Fig. 5. Mixed hierarchy of industrial branch for customers, using percentage values. The
percentage values represent the products consumed in a business organization

Property: industrial branch;
hierarchy:
industrial branch(1){
 computer(.3){
 software(.12),
 hardware(.18)
 },
 human consumption(.7){
 food(.56){
 prepared food(.112){
 mexican food(.0448),
 italian food(.0672)
 },
 meat(.168),
 fruits(.28)
 }
 drinks and cigars(.14){
 drinks(.056){
 whiskey(.0112),
 beer(.028),
 tequila(.0168)
 },
 cigars(.084) } } }

Precision-controlled retrieval in percentage hierarchies can also be done. Example:

Give me the customers whose industrial branch (figure 5) is food (with confusion of
1), sort and show the confusion values. Results are in figure 6.

Fig. 6. Querying, sorting and showing values for (industrial_branch = food)1 for customers of
figure 2.

select customer.name, customer.industrial_branch,
conf(customer.industrial_branch) from customer
where conf(customer.industrial_branch,'food')<=1 order by
conf(customer.industrial_branch)

NAME INDUSTRIAL_BRANCH FOOD
Luigi's italian food italian food 0
Tom's Hamburgers food 0
Canada seeds food 0
Texas fruits fruits 0
East coast meat meat 0
Mole Doña Rosa mexican food 0
Garcia Productores tequila 0.44
Tampa tobacco cigars 0.44
Microsol software 0.44

4. Implementation of confusion-controlled queries

An extension kit permits any database to handle imprecise retrieval: First, a parser
is used to translate (§4.1) XSQL predicates to a (pure) SQL query able to use pre-
calculated confusion tables (called SCTs). Then, execution of the new SQL predicate
is carried out. §4.2 explains how these tables are created.

4.1 Translating (by the parser) XSQL queries to valid SQL queries

Since we extended SQL by adding only conf(R, s) and conf(R), we need to deal
only with these two. If S is a valid XSQL SELECT query containing conf(R,s)≤ε
or conf(R):
1. Let t(R) = R’s table name and r(R) = R’s column name.
2. Add t(R) to the list of tables (FROM clause).
3. Translate any conf(R,s)≤ε as ‘(confusion.’ t(R) ‘_’ r(R) ‘norm.name=’

t(R) ‘.’ r(R) ‘ AND confusion.’ t(R) ‘_’ r(R) ‘_norm.’ s ‘≤’ ε ‘)’.
4. Translate any conf(R) as ‘confusion.’ t(R) ‘_’ r(R) ‘_norm.’ s.

Example: select customer.name from customer where
conf(customer.industrial_branch, ‘food’) <=1 translates to
select customer.name from customer,
confusion.customer_industrial_branch_norm where
(confusion.customer_industrial_branch_norm.name =
customer.industrial_branch AND
confusion.customer_industrial_branch_norm.food <=1).

If S is a valid XSQL UPDATE/DELETE arising from a predicate using Pε or Pε and

containing conf(R,s)≤ε only in the WHERE section:
1. Let t(R) = R’s table name and r(R) = R’s column name.
2. Create a valid SQL SELECT, named S2= ‘(SELECT ’ R ‘ FROM ’ t(R) ‘ WHERE
conf(’ R ‘.’ r(R) ‘)≤’ ε ‘)’.

3. Translate S2 [to get rid of the conf(R.r(R))<ε], generating a new expression S2’.
4. Replace every appearance of conf(R,s)≤ε in S by S2’.

For INSERT sentences, no confusion is valid, except for INSERT…SELECT. In

that case, translate the SELECT part as described.

4.2 Implementing the calculation of confusion values in databases

Applying conf (R, s)≤ε in a database table T involves the use of a function f that,
for every record x∈T, takes the r value stored in the R property of x and calculates
conf (r, s). If less or equal to ε, the record is returned. Doing this calculation for every
query is slow. Instead, sets of pre-calculated database tables of confusion (SCT’s) are
used to speed up the query process. This process is shown (displayed) in figure 7.

Fig. 7. Steps to compute a confusion table (CT) for a table T. The example uses for T the table
of Fig. 2, and the hierarchies in figs. 4 and 5. Two CT’s are produced, one is shown in Fig. 8

Step Example
Let T be a database table.
Tp={a1…an} are proper-
ties of T; Th={am …an}
are hierarchical proper-
ties of T and Th ⊆ Tp.

T = customer (see table customer in Fig. 2)
Tp = {name, industrial_branch, address, discount}
Th = {industrial_branch, address}

Consider each ax∈Th,
and form H={ hx | hx is
the hierarchy
corresponding to ax}

H = {hindustrial_branch, haddress} = the set of hierarchies of
T.

Let CT =
{confusion.T_am_norm,
…, confusion.T_an_norm
} where ax∈Th. For each
element ex∈CT, a pre-
calculated confusion
table will be created, as
described later.

CT = {confusion.customer_industrial_branch_norm,
confusion.customer_address_norm}

Given an element ex∈CT,
the set of properties sp
for ex is a function
defined as: sp(ex)=
{‘name’, hx1…hxn}
where hxy is an element in
the hierarchy hx and
hx∈H.

sp(confusion.customer_industrial_branch_norm)={na
me, industrial_branch, computer, human consumption,
software, hardware, food, drinks and cigars, prepared
food, meat, fruits, drinks, cigars, mexican food, italian
food, whiskey, beer, tequila }
sp(confusion.customer_address_norm)={name, world,
north america, canada, usa, mexico, california, new
york, florida, texas, mexico city, jalisco, silicon valley,
pasadena, new york city, miami, tampa, guadalajara}

Given an element ex∈CT,
the set of objects so for ex
is a function defined as:
so(ex)= { {hx1 , conf(hx1,
hx1)… conf(hx1,hxn) },…
{hxn , conf(hxn,hx1)…
conf(hxn , hxn) } }, where
hxy is an element in the
hierarchy hx and hx∈H.

so(confusion.customer_industrial_branch_norm)={
{industrial_branch,0.0,0.6,0.4,0.8,0.7,0.5,0.8,0.9,0.8,0.7,0.9,0.9,0.9,
0.9,0.9,0.9,0.9}, {computer,0.0,0.0,0.4,0.8,0.7,0.5,0.8,0.9,0.8,0.7,
0.9, 0.9,0.9,0.9,0.9,0.9,0.9},
...
{tequila,0.0,0.6,0.0,0.8,0.7,0.5,0.0,0.9,0.8,0.7,0.0,0.8,0.9,0.9,0.9,0.8,0.0}
} (the complete set of objects is not shown)
so(confusion.customer_addres_norm)={
{world, 0 ,1 ,2 ,2 ,2 ,3 ,3 ,3 ,3 ,3 ,3 ,4 ,4 ,4 ,4 ,4 ,4},
{north america,0 ,0 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,2 ,3 ,3 ,3 ,3 ,3 ,3},
…
{guadalajara, 0 ,0 ,1 ,1 ,0 ,2 ,2 ,2 ,2 ,1 ,0 ,3 ,3 ,3 ,3 ,3 ,0}
} (the complete set of objects is not shown)

Finally, given an element ex ∈ CT, the SQL confusion table for ex is an SQL table
defined as sp(ex) and filled with elements in so(ex); the name of the table will be ex.
SCT={em,…,en} is the set of confusion tables for T.

Fig. 8. SQL confusion table for confusion.customer_address_norm, as generated by
the algorithm of figure 7. Each row is r while each column is s. Another confusion table (for
confusion.customer_industrial_branch_norm, not shown) is generated, too.
Thus, the set SCT generated in figure 7 contains these two confusion tables (CT).

name
 world

 north america

 canada
 usa

 mexico

 california

 new york

 florida

 texas

 mexico city

 jalisco

 silicon valley

 pasadena

 new york city

 miami

 tampa

 guadalajara
world 0 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
north ame 0 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
canada 0 0 0 1 1 2 2 2 2 2 2 3 3 3 3 3 3
usa 0 0 1 0 1 1 1 1 1 2 2 2 2 2 2 2 3
mexico 0 0 1 1 0 2 2 2 2 1 1 3 3 3 3 3 2
california 0 0 1 0 1 0 1 1 1 2 2 1 1 2 2 2 3
new york 0 0 1 0 1 1 0 1 1 2 2 2 2 1 2 2 3
florida 0 0 1 0 1 1 1 0 1 2 2 2 2 2 1 1 3
texas 0 0 1 0 1 1 1 1 0 2 2 2 2 2 2 2 3
mexico city 0 0 1 1 0 2 2 2 2 0 1 3 3 3 3 3 2
jalisco 0 0 1 1 0 2 2 2 2 1 0 3 3 3 3 3 1
silicon vall 0 0 1 0 1 0 1 1 1 2 2 0 1 2 2 2 3
pasadena 0 0 1 0 1 0 1 1 1 2 2 1 0 2 2 2 3
new york c 0 0 1 0 1 1 0 1 1 2 2 2 2 0 2 2 3
miami 0 0 1 0 1 1 1 0 1 2 2 2 2 2 0 1 3
tampa 0 0 1 0 1 1 1 0 1 2 2 2 2 2 1 0 3
guadalajar 0 0 1 1 0 2 2 2 2 1 0 3 3 3 3 3 0

4.3 Two examples using confusion with mixed hierarchies for retrieval of
information in databases

In example 4.3.1 we need to hire one computer specialist (from candidates of
figure 10) with some special characteristics. The problem is to select the best
candidate fulfilling the desired requirements. It would be good to use confusion,
specially if there are few or no candidates covering all of the requirements. Figures 9,
11, 12 and 13 define the hierarchies. In example 4.3.2 we update groups of objects
that depend on hierarchical structures.

Fig. 9. Hierarchy for degree. It is a simple hierarchy, as defined in §1

degree{
 mathematics{
 computer{high school computer, college computer},
 physics college,
 electric{electric college, electronics college, electric high
 school},
 }
 biology{medical, biologist},
 humanities{history college, languages college}
}

Fig. 10. Candidates and their qualifications. The ideal candidate should have a college degree
related to computers; should know Java; should have worked previously as system analyst, and
should have experience in Solaris

NAME DEGREE LANG PREVIOUSWORK OPERATINGSYSTEM
Alfred college_computer java system_analyst unix
Brenda high_school_computer basic hackman windows_xp
John high_school_computer prolog secretary none
Thomas electronics_college python programmer linux
Susan electronics_college basic programmer windows_2000
Abraham electric_college cpp operator bsd
Natalie electric_high_school pascal secretary none
Martin physics_college lisp manager solaris
Alex physics_college lisp programmer_leader windows_2000
Ernest college_computer shell operator linux
Ann history_college none other none
Sam biologist none other linux
Fred languages_college prolog manager macos9
Robert electric_college java database_administrator linux
Bill high_school_computer cpp other solaris

Fig. 11. Hierarchy for work, pertinent to column PREVIOUSWORK of figure 10

work{
 computers related{programmer, programmer leader, system
 analyst, database administrator},
 administration related{chief executive, manager},
 operations related{operator, secretary, hackman}
 other
}

4.3.1 Limiting the errors.
Sort candidates to hire. Here we analyze the use of Pε. It is a way to limit the total
error in predicates: A list of candidates is given to cover available jobs on a new
enterprise. The requirements for the job is given in a predicate P. While Pε can select
and sort this list for a given value of ε, it is better to limit the sum of confusions
produced by each candidate (due to imperfect match of his qualifications). This is
accomplished by Pε, where ε is such limit. We will use figures 9-13. We begin by
using P = (degree = ‘high school computer’)2 ∧ (programming language = ‘java’)2 ∧
(previous work = ‘system analyst’)2 ∧ (experience = ‘solaris’)3.

Fig. 12. Hierarchy for programming language

languages{
 programming languages{
 artificial intelligence{prolog, lisp},
 object oriented{cpp, java, python},
 other{pascal, basic, shell}
 },
 none
}

We may reduce the confusion in P by querying with small ε’s, such as in P2=

(degree = ‘high school computer’)1 ∧ (programming_language = ‘java’)2 ∧
(previous_work = ‘system analyst’)1 ∧ (experience = ‘solaris’)2, so that now only
Alfred fulfills P. But, what if we need more employees to hire? This is where Pε goes.
It allows to use the sum of confusion values to delimit the objects that P holds for. So,
we can delimit P of figure 15 as follows: P5= ((degree = ‘high school computer’) 2 ∧
(programming_language = ‘java’) 2 ∧ (previous_work = ‘system analyst’) 2 ∧ (expe-
rience = ‘solaris’)3)

5. Having done this, now we are controlling the list of resulting
objects using the sum of confusions (figure 14):

Fig. 13. Hierarchy for operating systems.

systems{
 operating systems{
 unix{ linux, solaris, bsd}
 microsoft{windows 2000, windows nt 4, windows xp}
 apple{macos9, macosx}
 }
 none
}

Fig. 14. Querying with Pε
 to use the sum of confusions as a way to have a control of the

returning objects. The column showing the sum of confusion values for each object was added
by hand: it is not part of the query.

select candidates.name from candidates where
conf(candidates.degree,'high_school_computer')<=2 AND
conf(candidates.programminglanguage,'java')<=2 AND
conf(candidates.previouswork,'system_analyst')<=2 AND
conf(candidates.operatingsystem,'solaris')<=3 AND
conf(candidates.degree)+conf(candidates.programminglanguage)+conf
(candidates.operatingsystem)+conf(candidates.previouswork) <= 5"
NAME CONF_SUM
Alfred 2
Robert 4
Thomas 5
Bill 3

4.3.2 Update.
Give a discount to customers having food as industrial branch. (Update).
Hierarchies in figures 4 and 5 are used, where customers (figure 2) buy from a
supermarket. The supermarket wishes to give a discount of 7% to customers related to
food, because another supermarket is trying to have these customers. It is possible to
do this update using pure SQL, but it involves the execution of several SQL
sentences. Using XSQL to update objects delimited by hierarchical qualitative values
provides a simpler and faster way to execute to the database server. Use
update customer set discount=0.07 where customer.name in
conf(customer.industrial_branch,'food')<=0

The ‘confusion way’ is efficient because the update is solved by filtering the
customer’s table using joins with SCT’s tables. The update result appears in figure 15.

Fig. 15. Update results to customers related to food in the INDUSTRIAL_BRANCH property;
the sentence was update customer set discount=0.07 where
customer.name in conf(customer.industrial_branch,'food')<=0

NAME INDUSTRIAL_BRANCH DISCOUNT
Media Tools computers 0.0
Garcia Productores tequila 0.0
East coast meat meat 0.07
Luigi’s Italian food italian food 0.07
Mole Doña Rosa mexican food 0.07
Texas fruits fruits 0.07
Tampa tobacco cigars 0.0
Canada seeds food 0.07
Tom’s Hamburgers food 0.07
Microsol software 0.0

5. Conclusions

The similarity among symbolic values that form hierarchies is exploited through
use of confusion. Predicates with controlled precision Pε(o) (called “P holds for o with
precision ε”) and Pε(o) (called “P delimited by ε, holds for o”) allow us to define
precision-controlled retrieval of hierarchical values. These predicates permit “loose
retrieval” (retrieval with defined confusion bounds) of objects that sit in a relational
database. Moreover, such database could be an existing “normal” database (where no
precision-controlled retrieval was possible), to which one or more definitions of
hierarchies are attached. This in fact provides a procedure (a “kit”) to extend any
(existing) database to another in which imprecise retrievals are possible. Furthermore,
this extension can be done without recompiling application programs. Old programs
(with no precision retrieval) still work as before, whereas new application programs
can exploit the database with precision-controlled queries. Thus, a “normal” database
now becomes a “precision-controlled” database when the kit is applied to it.

Acknowledgments. Work was partially supported by CONACYT Grant 43377. First
and second authors have a SNI National Scientist Award.

References

1. A. Guzman-Arenas and S. Levachkine. Hierarchies Measuring Qualitative Varia-
bles. Lecture Notes in Computer Science LNCS 2945 (Computational Linguistics
and Intelligent Text Processing), (Springer-Verlag 2004). 262-274.

2. A. Guzman-Arenas and S. Levachkine. Graduated errors in approximate queries
using hierarchies and ordered sets. Lecture Notes in Artificial Intelligence LNAI
2972, (Springer-Verlag 2004). 139-148. ISSN 0302-9743

3. S. Levachkine and A. Guzman-Arenas. Confusion between hierarchies partitioned
by a percentage rule. Unpublished manuscript.

4. S. Levachkine and A. Guzman-Arenas. Hierarchy as a new data type for qualitative
variables. Submitted to Data and Knowledge Engineering.

